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Abstract— The Central Pattern Generator (CPG) is adept
at generating rhythmic gait patterns characterized by con-
sistent timing and adequate foot clearance. Yet, its open-
loop configuration often compromises the system’s control
performance in response to environmental variations. On the
other hand, Reinforcement Learning (RL), celebrated for its
model-free properties, has gained significant traction in robotics
due to its inherent adaptability and robustness. However,
initiating traditional RL approaches from the ground up presents
computational challenges and a heightened risk of converging to
suboptimal local minima. In this paper, we propose an innovative
quadruped locomotion framework, SYNLOCO, by synthesizing
CPG and RL that can ingeniously integrate the strengths
of both methods, enabling the development of a locomotion
controller that is both stable and natural. Furthermore, we
introduce a set of performance-driven reward metrics that
augment the learning of locomotion control. To optimize the
learning trajectory of SYNLOCO, a two-phased training strategy
is presented. Our empirical evaluation, conducted on a Unitree
GO1 robot under varied conditions—including distinct velocities,
terrains, and payload capacities—showcases SYNLOCO’s ability
to produce consistent and clear-footed gaits across diverse
scenarios. The developed controller exhibits resilience against
substantial parameter variations, underscoring its potential for
robust real-world applications.

I. INTRODUCTION

Quadruped robots are expected to be more common in
industrial and daily life due to their extraordinary mobility
competence in rough terrains and recent progress in com-
puting technology. In particular, quadruped robots offer the
best advantage in terms of mobility and versatility in various
harsh and dangerous scenarios, e.g., power plant inspections
[1], underground exploration [2], and planet exploration
[3], etc.. In these challenging tasks, quadruped robots must
traverse uneven terrain with various payloads. Hence, robust
locomotion capabilities are highly expected for quadruped
robots in real-world applications.

An interesting solution to quadrupled locomotion is based
on Central Pattern Generators (CPGs), which are circuits in
animal self-contained integrative nervous systems to generate
repetitive movements, for example, walking, swimming,
crawling and flying [4], [5]. Therefore, a CPG can generate
rhythmic joint signals for locomotion control without using
model information [6]–[8]. CPG-based locomotion control
is simple, stable, and time-efficient, making it pleasant
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Fig. 1: Training and evaluation snapshots. Top: Training in
Isaac Gym. Bottom: Evaluation under a time-varying velocity
command.

for real-time online implementations. However, most CPG-
based locomotion control methods are open-loop, so they
are barely adaptive to environmental changes. Parameter
tuning is laborious and non-trivial for all CPGs, which often
requires a great amount of expert knowledge or uses advanced
optimization techniques, e.g., genetic algorithms [8]. It should
also be noted that CPG-based quadruped locomotion often
performs poorly [9].

Reinforcement learning (RL) does not need a mathematical
model similar to CPGs, which recently has shown great
potential in quadruped locomotion control [10]–[13]. In RL,
a locomotion control policy is learned using collected input
and output data through robot interactions with environments
[10]. The learning process of RL is fully data-driven, so no
model information is required. Policy learning in RL is a
trial-and-error process that requires a large amount of data.
Hence, a simulator is often necessary to generate enough
data for training because real-world experiments are time-
consuming, dangerous, and expensive. However, the policy
learned in the simulation would experience performance
degeneration due to the discrepancy between the simulated
and real-world environments. Besides, mapping from sensory
information to joint commands often results in nonintuitive
motions. Designing valid reward functions for effectively
learning natural locomotion under different poses and gaits
is challenging. Specialized knowledge will always facilitate
the reward design of RL.

In this paper, we are interested in developing stable,
natural, and robust locomotion control of quadruped robots
in a model-free manner. A framework called SYNLOCO
is proposed, which takes the merits of CPG and RL and
synthesizes a CPG-based gait planner and a reinforcement
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learning-based feedback control (RLFC) module as depicted
in Fig. 2. This framework enables a quadruped robot to react
efficiently to various commands and environments with a
steady and natural gait. Extensive experiments are performed
to demonstrate the efficiency of the proposed framework. The
whole contributions of this paper are three-fold:

1) A quadruped locomotion control framework by synthesiz-
ing CPG and RL is presented, referred to as SYNLOCO.
The proposed SYNLOCO framework can efficiently
learn a stable, natural, and robust locomotion controller
for a quadruped robot by leveraging the merits of both
CPG and RL. The CPG in SYNLOCO generates stable
rhythmic open-loop gait signals with sufficient foot clear-
ance, which could be reference signals facilitating RL to
avoid local minima. The RL module can learn a feedback
control policy that dynamically modifies the unnatural
gait signals of CPG using onboard proprioceptive sensors.
Experiments illustrate that the proposed SYNLOCO can
generate steady and robust locomotion with sufficient
foot clearance in diverse situations, e.g., different velocity
commands, terrains, and payloads.

2) The significantly enhanced velocity tracking performance
and the robustness of the learned locomotion control
policy are observed and found during RL controller
by a plethora of performance-inspired reward functions,
adding curriculum strategy and domain randomization.
It is enlightening for the training setups of both our
SYNLOCO algorithm and other RL-based quadruped
locomotion control. Extensive experimental evaluations
are performed to illustrate the advantages of learning
a robust controller using the proposed approach. In
particular, the quadruped robot can steadily march
forward with 11 kilograms of payloads that dramatically
exceed the situation at the training stage, so it verifies
the robustness of the learned locomotion control.

3) A two-step training mechanism is proposed for SYN-
LOCO, which can facilitate fast, stable training via
behavior cloning and reinforcement learning. In the
first step, the CPG-based SYNLOCO planner is trained
through supervised learning to clone the behavior from
animal demonstration data. This step enables the CPG
to learn from demonstration without interacting with the
environment, accelerating the training process. Based on
the trained baseline signal, the feedback RL policy is
trained in a parallel way for generating residual signals
for CPG. This two-step training mechanism would reduce
the difficulty of policy learning in SYNLOCO, as the
preliminary signal is. It is also favorable to learning
natural locomotion as the CPG-based planner matches
the behaviors of animals.

The remainder of this paper is organized as follows. Section
II summarized the related works about CPG and RL. Section
III introduces the CPG-based gait planner and its behavior
cloning method. Followed by the feedback controller and its
RL training approach in section IV. The experimental results
for our method are presented in Section V. Conclusions are
summarized in Section VI.
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Fig. 2: The SYNLOCO framework synthesizes RL and a
CPG for quadruped locomotion.

II. RELATED WORKS

A. Model predictive control for quadrupled locomotion

Quadrupled locomotion has been extensively investigated
using model predictive control (MPC) [14]–[19]. In MPC,
an online optimization problem is resolved recursively using
predicted state trajectories on a finite time horizon by a
robot model [14]. Therefore, an accurate model of the
quadruped dynamics is indispensable for all MPC methods
to generate stable or effective locomotion for quadruped
robots. If the model parameters deviate far from the actual
ones, the locomotion controller by MPC will perform poorly
in practice. The heavy dependence of MPC on the model
accuracy makes it difficult to apply to challenging uncertain
situations, e.g. traversing uneven terrain [11]. MPC is also
computationally expensive, so it is often challenging to meet
real-time requirements [20].

B. Central pattern generator for quadruped locomotion

CPGs can produce rhythmic signals that are useful for
the regulation of the repetitive movements of bio-inspired
robots. Numerous artificial CPG models, such as the Hopf
model [21], the Kimura model [22], and SO(2) oscillator
model [8], have been proposed for locomotion control tasks.
Among various CPG models, the SO(2) oscillator model has
received more attention because they are computationally
efficient for online implementation [9], [23], [24]. However,
parameter tuning remains difficult for all CPGs. Combining
a CPG with other approaches has been discussed to build a
general auto-tuning framework for locomotion. In [9], a SO(2)
oscillator model is synthesized with a radial basis function
(RBF) network that is optimized using a black-box method.
A modular CPG-RBF network is introduced to realize legged
robot control with fast learning [24]. However, these works
focus on the hexapod robot without feedback control and



need better performance for quadruped robots. Bellegarda
et al. proposed a framework using an RL method to adjust
CPG parameters [7]. RL learns the gait pattern and foot
end trajectory, which enables a quadruped robot to move
with different foot clearance and body height. However, its
foot end trajectory is predefined only for forward tasks. Shi
et al. proposed a framework that includes a learned CPG-
based evolutionary trajectory generator with an RL-trained
network to perform multitask locomotion [23]. These auto-
tuned CPGs cannot guarantee the learned gait pattern, since
defining a reward function to specify the coupled relationship
between legs is difficult. These works bring a viable approach
combining CPG and other data-driven methods, inspiring us
with a hybrid approach to design a controller.

C. Reinforcement learning-based locomotion control

In recent years, RL has been successfully implemented
to deal with quadruped locomotion [25]. RL-trained net-
works demonstrated high-speed locomotion capabilities on
deformable terrains [12]. Agile locomotion can be learned via
DRL with an adaptive curriculum on commands and online
system identification [26]. However, RL-based locomotion
control requires a lot of data for policy training, which
is too expensive for real experiments. The trial-and-error
learning process of RL is also risky for real physical systems.
Hence, policy training in terms of simulated data is preferred
for robot control tasks [25]. Considering the discrepancy
between the simulated and real environments, this approach
raises concern about the possibility of successful sim-to-
real transfer. Peng et al. realized the robot arm policy
transfer by a domain randomization method that randomly
changes the parameters of the model in training [27]. Tan
et al. analyzed the performance of domain randomization in
quadruped locomotion [28]. Other methods include system
identification [10]. The domain randomization method allows
the trained policy to be directly deployed to the robot without
any other configuration, which is also applied in this paper.
Despite the successful RL-based locomotion demos, learning
an effective policy using an RL method is still challenging
and expensive. The design of reward functions for natural
and stable locomotion learning is still an open issue. In this
paper, both issues will be addressed.

III. CPG-BASED GAIT PLANNER MODULE

The CPG-based gait planner is introduced to generate
baseline gait signals for quadruped robots and optimized
based on supervised learning as shown in Fig. 2. Similar to
[9], [24], the CPG-based gait planner consists of a CPG layer,
an RBF layer, and a motor layer. It is trained to produce
desired gait patterns and frequencies via behavior cloning.
The output of the gait planner is then used as the baseline
gait signals to be regulated by the RLFC.

A. CPG-based gait planner architecture

The CPG layer is a simple SO(2) oscillator capable of
generating stable rhythmic signals against perturbation. The

SO(2) oscillator has two neurons with a sigmoid activation
function as in (1).[

o0(t +1)
o1(t +1)

]
= tanh

(
α

[
cosφ sinφ

−sinφ cosφ

][
o0(t)
o1(t)

])
, (1)

where φ is the desired oscillation velocity, oi(t) represents
the state of neuron i ∈ {0, 1} at the time instant t, α is a
hyper-parameter set to be 0.01. The parameter φ is set to π

60
to match the gait frequency of the demonstrated locomotion.

The second layer is the Radial Basis Function (RBF) layer.
The RBF layer takes o0 and o1 as inputs and outputs a
Gaussian-like expression.

Rh = exp

(
−
(o0 −µh,0)

2 +(o1 −µh,1)
2

σ2
RBF

)
, (2)

where oi are the CPG outputs, µh, j is the position, and σRBF
is the width of RBF neuron h. A bell-shaped curve Rh is
generated with a center µh,n and width σ2

RBF . The center of
the RBF neurons is uniformly distributed along the limit cycle
of the CPG output. For node h, the center of dimension n is
denoted as µh,n = on (hT/H), where T is the signal period,
and H is the number of RBF neurons in the layer. In the
RBF layer, the width of each function and the number of
nodes jointly determined the output signals. With more RBF
neurons and narrower widths, the signal can change rapidly,
and vice versa. We set H = 20 and σRBF = 0.1 for this layer.

The motor layer is a fully connected neural network with
one layer without activation functions. The output of the motor
layer is a 12-dimensional vector representing the baseline
position reference signals for 12 joints of the quadruped
robots. The baseline signal indicates the desired gait pattern
and frequency.

B. Supervised Learning for behavior cloning

The weights of the motor layer are trained via behavior
cloning based on the supervised learning technique. Behav-
ior cloning enables the CPG-based gait planner to clone
gaits from demonstrations using supervised learning without
interacting with environments. Animal demonstrations are
obtained from [29], where a motion clip of an animal trotting
at 1.5 Hz is selected as the demonstrated data. The foot
end trajectories in the body frame are extracted from the
raw data and adjusted according to the geometry information
of the quadruped robot (Unitree Go1) used in this paper.
The objective of the supervised learning is to minimize the
mean square error (MSE) loss between the acquired foot
end trajectories and generated trajectories from the CPG-
based gait planner. The foot end trajectories of the CPG-
based gait planner are calculated by robot forward kinematics.
The training and validation set are split randomly from the
acquired foot end trajectories by 7:3.

IV. REINFORCEMENT LEARNING-BASED FEEDBACK
CONTROL

Following the idea of residual reinforcement learning, we
use RL to learn a feedback control policy that generates



TABLE I: Reward functions and weights

Name Expression Weight

Linear velocity tracking exp(−
||v∗b,xy−vb,xy ||2

0.25 ) 1dt

Angular velocity tracking exp(−
||ω∗

b,z−ωb,z ||2

0.25 ) 0.5dt
Linear velocity penalty v2

b,z -2dt
Angular velocity penalty ||ωb,xy||2 -0.05dt
Trunk orientation ||ĝx||2 + ||ĝy||2 -5dt

Trunk height 1− exp(− ||hb−h∗b ||
2

8.1×10−4 ) -1dt

Joints acceleration || q̇ j−1−q̇ j
dt ||2 −1×10−7dt

Action rate ||q∗j−1 −q∗j ||2 -0.005dt
Self collision ncollisions -0.001dt
Foot air time ∑

4
f=0(tair, f −0.5) 1.5dt

Foot end position ∑
4
n=1 exp(− ||p f −pd ||2

0.02 ) 0.3dt

residual control signals to modify the outputs of the CPG-
based gait planner, thus resulting in the reinforcement
learning-based feedback control (RLFC). Details of the RLFC
are provided later.

Observations: The observation space includes high-level
commands {v∗x ,v

∗
y ,ω

∗
z }, trunk angular velocity ωb, unit gravity

vector in body frame ĝ, joint positions {q0,q1, ...,q11}, joint
velocities {q̇0, q̇1, ..., q̇11}, the foot end contact booleans
{c0,c1,c2,c3}, the actions at the last timestep, and gait planner
signal. Some of the observations are resized before being
sent to the network. The linear velocity command is scaled
by 2.0. The angular rate command and trunk angular rates
are scaled by 0.25. Joint velocities are scaled by 0.05.

Actions: The action space is 12-dimensional, the residual
joint command signals for 12 joint actuators of a quadruped
robot. The resultant position command signal qt for each joint
is the sum of the CPG-based gait planner output qCPG,t and the
RLFC module output qRLFC,t , so qt = qCPG,t +qRLFC,t . A first-
order low-pass filter filters the synthesized signal qt before
sending it to the subsequent PD joint position controllers
in the expression st = αqt + (1−α)st−1, where qt is the
origin signal and st is the filtered signal in time step t and
α = 0.7. Joint PD controllers calculate joint torque sent to
the motor and actuate the robot’s locomotion. The subsequent
proportional and derivative gains are Kp = 75, Kd = 1.5.

Reward functions: The total reward is a weighted sum of
11 terms shown in TABLE I. The linear and angular velocity
tracking rewards encourage a robot to track a target velocity.
The trunk height and orientation rewards penalize the unsteady
behaviors of the robot trunk. The rewards of joint acceleration
and action rate penalize the dramatic change in the actual
acceleration of the joint and the actions given. Self-collision
term penalizes the collision between each foot and accelerates

TABLE II: PPO hyper-parameters

Parameter Value
Learning rate Adaptive

Batch size 98304 (4096×24)
Mini-batch size 24576 (4096×6)
Discount factor 0.99
GAE lambda 0.95

Desired KL-divergence 0.01
Entropy coefficient 0.01

Clip range 0.2
Number of epochs 5

TABLE III: Parameters for domain randomization

Parameter Range
Randomized

dynamics
Trunk mass [-1,1] kg
Foot end friction coefficient [0.5,1.25]

Trunk
impulse

Trunk impulse magnitude vxy [-1.8,1.8] m/s
Trunk impulse interval 15 s

Sensor
noises

Trunk angular velocity noise [-0.05,0.05] rad/s
Gravity vector noise [-0.05,0.05]
Joint positions noise [-0.01,0.01] rad
Joint velocities noise [-0.075,0.075] rad/s

the training speed. The feet airtime term rewards the foot off
the ground to avoid the foot end dragging the ground during
its swing. The foot end position term penalizes the deviation
of the foot end position during robot locomotion.

RL policy: The classical RL algorithm, Proximal Prob-
ability Optimization (PPO) [30], is selected to learn the
feedback body controller in our method. A three-layer Multi-
Layer Perceptron (MLP) with ELU activation functions
will parameterize the actor and critic. The dimensions of
the hidden layers are 512, 256, and 128, respectively. The
remaining hyperparameters of PPO are listed in TABLE II.

Domain randomization: Domain randomization techniques
are employed in the training process to alleviate the sim-to-
real gap issue. First, the dynamic parameters are randomized,
including body mass and terrain friction coefficient, in each
training episode to simulate the various environments. In
addition, an instant linear velocity change toward the trunk
is randomly applied to train a robust policy to withstand
perturbation. A curriculum learning strategy similar to [10]
is introduced to steadily improve the locomotion robustness
via gradually increasing the perturbation during the training.
Suppose that the mean tracking reward reaches a predefined
threshold, the impulse interval decreases, and the maximum
impulse magnitude increases. Therefore, a fierce impulse is
more likely to be applied to the robots. Finally, we add noise
to the sensor’s feedback to increase the controller’s robustness
against measuring errors and sensor faults. The parameters
used for domain randomization are shown in TABLE III. All
randomized parameters follow a uniform distribution.

Training setup: Isaac Gym environment is used to conduct
our training [31]. As shown in Fig. 1, the quadruped robot is
trained to follow high-level commands on both flat terrain and
slope in parallel with 4096 agents. The simulation runs at 200
Hz, while the policy runs at 50 Hz. The maximum episode
length is 20 s (or 1000 time steps). If the episode’s duration
reaches 20 s or the robot trunk collides with the ground, the
episode is terminated and restarted. High-level commands
include forward velocity v∗x ranging from [-1,1] m/s, lateral
velocity v∗y ranging from [-1,1] m/s, and steering angular
velocity ω∗

z ranging from [-1,1] rad/s. These commands are
sampled from a uniform distribution every 10 seconds. At
the beginning of each episode, the robot spawned in the air
with the default pose and randomized high-level commands.
The gait planner state is also initiated once the episode starts.

V. EXPERIMENTAL RESULTS

Real-world experiments are conducted to validate the
efficiency of the proposed algorithm. The locomotion per-
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Fig. 3: The velocity tracking performance. The experiment is
repeated five times, based on which the mean and standard
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formance is evaluated by sending different forward velocity
commands or in different terrains. Some snapshots of our
experiments are shown in Fig. 7.

A. Locomotion control for different velocity command
The velocity tracking performance under different com-

mands was analyzed at first. To test its velocity-tracking
performance, the robot is given a time-varying velocity
command (from 0 m/s to 1 m/s). The velocity command
v∗ will eventually remain at 1 m / s for 1 s. The OptiTrack
motion capture system is used in the evaluation to obtain
precise locomotion data for analysis. Fig. 3 shows the
velocity tracking performance. The trunk velocity tracked
the command well at a slow velocity, but there were more
oscillations at a higher velocity. This is because the robot
trunk velocities are unavailable for our SYNLOCO algorithm.
With the increase of velocity commands, the impact of the
lack of velocity measurements will be more obvious. Hence,
it implies that velocity measurements would be necessary for
high-speed tracking. This conclusion is also verified via the
testing at different constant velocity commands for the system,
namely 0.25 m/s, 0.5 m/s, 0.75 m/s, and 1 m/s, respectively,
as shown in Fig. 4. The trunk height, pitching angle, and
rolling angle responses demonstrate quadruped robots’ steady,
natural locomotion under our proposed design as shown in
TABLE IV.
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Fig. 4: Trunk velocity responses under different commands.

Fig. 5 shows the feet’ contact patterns with the ground. The
diagonal feet are in the same phase, while the adjacent feet
are in the opposite phase. It implies that the robot can keep a
steady trotting gait. The stance status (colored in the figure) is
a more significant proportion than the swing status (blank in
the figure), as shown in Fig. 5. The experiment validated that
the proposed SYNLOCO algorithm can generate continuous
stable locomotion under different desired velocities with a
desired fixed gait.
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Fig. 5: Robot gait pattern under a time-varying velocity
command. The front right and rear left legs are in the same
phase, which applies to the front left and rear right legs. It
implies that the robot by SYNLOCO can keep a steady trotting
gait with about 1.5Hz frequency under varying velocities.

The actual foot end trajectories at a local frame are provided
as shown in Fig. 6. The robot can maintain the same foot
clearance at different velocities. The foot clearances in the
front legs are about 7cm, and the rear ones are about 4
cm. It is noted that the foot end is consistently fixed to the
ground in its stance phase. The step length increases with
increasing velocity. It implies that the locomotion under the
proposed SYNLOCO algorithm is stable, steady, and natural,
as illustrated in Fig. 1.
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Fig. 6: Foot trajectories in the XOZ plane of the local frame
under a time-varying velocity. The dashed line represents the
average foot clearance.

As shown in Fig. 8, the CPG-based gait planner generates
a fixed foot baseline trajectory depicted in the black line. The
baseline trajectory is regulated by the RLFC, leading to a
varying trajectory as the colored line in Fig. 8. This implies
that the RLFC can adjust the step length according to sensor
feedback to keep foot clearance invariant.

TABLE IV: Trunk states at different velocity commands

Trunk state Velocity command (m/s)
Varying 0.25 0.5 0.75 1.00

Velocity
(m/s)

Mean / 0.233 0.472 0.704 0.874
Std. Dev. / 0.014 0.020 0.033 0.040

Height
(m)

Mean 0.317 0.318 0.319 0.317 0.316
Std. Dev. 0.005 0.004 0.005 0.006 0.007

Pitch
(deg)

Mean 2.745 1.872 2.754 2.622 3.702
Std. Dev. 2.480 0.666 2.846 7.082 4.101

Roll
(deg)

Mean -0.050 0.183 -0.162 -0.113 0.059
Std. Dev. 1.361 1.371 1.289 1.192 1.514
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Fig. 7: Experiments. Left: Downhill trotting. Middle: Uphill trotting. Right: Trotting with an 11 kg payload at 0.8 m/s.
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The relationship between the desired foot end trajectory
and the actual foot end trajectory of the front right (FR) foot
under different velocity commands is discussed as shown
in Fig. 9. Overall, the actual foot end trajectory resembles
the desired ones with similar foot clearance and step length.
Noticed that the desired trajectory is non-convex at the bottom,
which is unmatched by the robot configuration, but the actual
trajectory is smoothed. We can infer that the RL module
learned how to generate feed-forward torque to compensate
for the impulse from touching land by applying excessive
modulation. The feedback controller controls the body pose
by this method.
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Fig. 9: XZ trajectories of the front right foot in the body frame
by our SYNLOCO algorithm at different velocity commands.

B. Locomotion control for different tasks

As shown in Fig. 7, the SYNLOCO algorithm is further
evaluated in different environment configurations. Commands
are sent using a joystick, including the forward velocity that
ranges from [0,1] m / s and the steering angular rate that
ranges from [−1,1] rad / s. The robot can perform stable and
robust in different terrains with different payloads (Fig. 7).
The transition between movements, such as marching forward
and turning right, is steady and smooth. In addition, the robot
can robustly traverse different surfaces, including rigid floors
and deformable mattresses with various hardness.

It has also been demonstrated that the proposed SYNLOCO
algorithm can allow the robot to steadily go uphill and
downhill naturally, as shown in Fig. 7. The robustness of
the proposed controller against parameter changes is also
evaluated by making the robot carry an 11-kilogram payload.
Such a payload is almost as heavy as the body mass of the
Unitree Go1 robot. We dispersed dumbbell pieces above
and below the robot trunk (placing 4.5 kg payloads at
the bottom and 6.5 kg payloads at the top). Because the
trunk mass varies in a small range ([-1,1] kg) by domain
randomization during training, this experiment can illustrate
our SYNLOCO controller has significant robustness against
unexpected perturbations or varying model parameters.

VI. CONCLUSIONS

This work presented a new quadruped robot controller,
SYNLOCO, synthesizing a CPG-based gap planner module
and a Reinforcement Learning-based Feedback Controller
module. The simulation results showed that the controller
can learn the quadruped robot locomotion under the desired
gait pattern and frequency by our two-step training method.
We also deployed the learned controllers in a real-world
quadruped robot. The experiment results demonstrate that
the learned controller can track different reference velocities
and is robust for carrying heavy payloads and traversing
uneven terrain. In SYNLOCO, the CPG-based gait planner
can determine the baseline robot gait, and the RLFC module
can adaptively regulate the baseline gait signals using sensor
feedback.

The proposed SYNLOCO is only implemented to learn a
stable and robust trotting gait. Therefore, one of the future
works will be the extension of the proposed SYNLOCO
algorithm to learn more gait patterns. Diverse terrains, such
as stairs and gaps, will be considered in future work.
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